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Abstract. We investigate spin-dependent parton distributions in the polarized virtual photon target in
perturbative QCD up to the next-to-leading order (NLO). In the case Λ2 � P 2 � Q2, where −Q2 (−P 2)
is the mass squared of the probe (target) photon, the parton distributions can be predicted completely
up to NLO, but they are factorization-scheme dependent. We analyze the parton distributions in six
different factorization schemes and discuss their scheme dependence. We study, in particular, the QCD and
QED axial anomaly effects on the first moments of the parton distributions to see the interplay between
the axial anomalies and factorization schemes. We also show that the factorization-scheme dependence
is characterized by the large-x behaviors of the quark distributions in the virtual photon. The gluon
distribution is predicted to be the same up to NLO among the six factorization schemes examined. In
particular, the first moment of the gluon distribution is found to be factorization-scheme independent up
to NLO.

1 Introduction

In the two-photon process of e+e− collision experiments,
we can measure the structure functions of the virtual pho-
ton (Fig. 1). The advantage in studying the virtual photon
target is that in case

Λ2 � P 2 � Q2, (1.1)

where −Q2 (−P 2) is the mass squared of the probe (tar-
get) photon and Λ is the QCD scale parameter, we can
calculate the whole structure function up to the next-to-
leading order (NLO) in QCD by the perturbative method,
in contrast to the case of a real photon target where in
NLO there exist non-perturbative pieces [1,2]. The spin-
independent structure functions F γ2 (x,Q2, P 2) and F γL(x,
Q2, P 2) as well as the parton contents were studied in the
leading order (LO) [3] and in NLO [4–9]. The target mass
effect of an unpolarized and a polarized virtual photon
structure in LO was discussed in [10].

The information on the spin structure of the photon
would be provided by the resolved photon process in the
polarized version of the DESY electron and proton col-
lider HERA [11,12]. More directly, the polarized photon
structure function can be measured by polarized e+e− col-
lisions in the future linear colliders. For the real photon
(P 2 = 0) target, there exists only one spin-dependent
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Fig. 1. Deep inelastic scattering on a polarized virtual photon
in polarized e+e− collision, e+e− → e+e−+ hadrons (quarks
and gluons). The arrows indicate the polarizations of the e+,
e− and the virtual photons. The mass squared of the “probe”
(“target”) photon is −Q2 (−P 2) (Λ2 � P 2 � Q2)

structure function, gγ1 (x,Q
2), which is equivalent to the

structure function W γ
4 (x,Q2) (gγ1 ≡ 2W γ

4 ) discussed some
time ago in [13,14]. The LO QCD corrections to gγ1 for
the real photon target was first calculated by one of the
authors [15] and later in [16,17], while the NLO QCD
analysis was performed by Stratmann and Vogelsang [18].
The first moment of the photon structure function gγ1 has
recently attracted attention in the literature [17,19–22] in
connection with its relevance for the axial anomaly. More
recently the present authors investigated [23] the spin-
dependent structure function gγ1 (x,Q

2, P 2) of the virtual
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photon up to NLO in QCD, where P 2 is in the above
kinematical region, (1.1). The analysis was made in the
framework of the operator product expansion (OPE) sup-
plemented by the renormalization group method and also
in the framework of the QCD improved parton model [24]
using the DGLAP parton evolution equations.

In the past few years, the accuracy of the experimen-
tal data on the spin-dependent structure function g1 of
the nucleon has significantly been improved [25]. Using
these experimental data together with the already exist-
ing world data, several groups [26–29] have carried out
NLO QCD analyses of the polarized parton distributions
in the nucleon. These parton distributions may be used
for predicting the behaviors of other processes such as po-
larized Drell–Yan reactions and polarized semi-inclusive
deep inelastic scatterings, etc. However, parton distribu-
tions obtained from the NLO analyses are dependent on
the factorization scheme employed. It is possible that par-
ton distributions obtained in one scheme may be more ap-
propriate to use than those in other schemes. In the case
of a nucleon target, however, it may be difficult to exam-
ine the features of each factorization scheme, since for the
moment it is inevitable to resort to some assumptions in
order to extract parton distributions from the experimen-
tal data.

On the other hand, it is remarkable that, in the case
of a virtual photon target with the virtual mass −P 2 be-
ing in the kinematical region of (1.1), not only the photon
structure functions but also the parton distributions in
the target can be predicted entirely up to NLO in QCD.
Thus, comparing the parton distributions predicted by one
scheme with those by other schemes, we can easily exam-
ine the features of each factorization scheme. In conse-
quence, the virtual photon target may serve as an optimal
place to study the behaviors of the parton distributions
and their factorization-scheme dependences.

In this paper we examine in detail the polarized parton
(i.e., quark and gluon) distributions in the virtual photon
target. The polarized parton distributions are particularly
interesting due to the fact that they have relevance for
the axial anomaly [30]. The interplay between the QCD
axial anomaly and the factorization schemes has already
been discussed for the spin-dependent structure function
g1 of the nucleon [31–37]. It was explained there that the
QCD axial anomaly effect is retained in the flavor sin-
glet quark distribution in the nucleon in the standard MS
scheme, but it is shifted to the gluon coefficient function in
a scheme such as the one called the chirally invariant (CI)
factorization scheme. Now it should be pointed out that
the polarized photon target is unique in the sense that not
only QCD but also the OED axial anomaly occurs. The
QED axial anomaly, which is an U(1) anomaly, emerges
when a quark has an electromagnetic charge. Thus the
flavor-non-singlet quark distribution is also relevant, be-
sides the flavor singlet one. Depending upon the factor-
ization schemes, the QED axial anomaly effect resides in
both the flavor singlet and non-singlet polarized quark
distributions in the virtual photon, or it is shifted to the
photon coefficient function, in which case we arrive at an

interesting result: the first moments of the polarized quark
distributions in the virtual photon, both flavor singlet and
non-singlet, vanish in NLO. Also we find that the large-x
behaviors of the polarized quark distributions dramati-
cally vary from one factorization scheme to another. In-
deed, for x → 1, the quark distributions positively diverge
or negatively diverge or remain finite, depending on the
factorization schemes.

We perform our analyses in six different factorization
schemes: (i) MS, (ii) CI (chirally invariant) (also called
JET) [37,38], (iii) AB (Adler–Bardeen) [36], (iv) OS (off-
shell) [36], (v) AR (Altarelli–Ross) [36], and finally (vi)
DISγ schemes [39], and we will see how the parton dis-
tributions change in each scheme. In particular, we study
the axial anomaly effects on the first moments and the
large-x behaviors of the parton distributions. The gluon
distribution in the virtual photon is found to be the same
up to NLO, at least among the factorization schemes con-
sidered in this paper. Furthermore, the first moment of the
gluon distribution turns out to be factorization-scheme in-
dependent up to NLO. Part of this result has been briefly
reported elsewhere [40].

In the next section we discuss the polarized parton
distributions in the virtual photon. The explicit expres-
sions for the flavor singlet (non-singlet) quark and gluon
distributions predicted in QCD up to NLO are given in
AppendixA. In Sect. 3, we derive the transformation rules
for the relevant two-loop anomalous dimensions and one-
loop photon matrix elements from the MS scheme to other
factorization schemes and then explain the particular fac-
torization schemes we consider in this paper. In Sect. 4, we
examine the first moments of the parton distributions with
emphasis on the interplay between the QCD and QED
axial anomalies and the factorization schemes. The be-
haviors of the parton distributions near x = 1 and their
factorization-scheme dependence are discussed in Sect. 5.
The numerical analyses of the parton distributions pre-
dicted by the different factorization schemes will be given
in Sect. 6. The final section is devoted to the conclusion
and the discussion.

2 Polarized parton distributions in the photon

Let qi±(x,Q2, P 2), Gγ±(x,Q2, P 2), Γ γ±(x,Q2, P 2) be the
quark (with i-flavor), gluon, and photon distribution func-
tions with ± helicities of the longitudinally polarized vir-
tual photon with mass −P 2. Then the spin-dependent par-
ton distributions are defined as ∆qi ≡ qi+ + q̄i+ − qi− − q̄i−,
∆Gγ ≡ Gγ+ − Gγ−, and ∆Γ γ ≡ Γ γ+ − Γ γ−. In the lead-
ing order of the electromagnetic coupling constant, α =
e2/4π, ∆Γ γ does not evolve with Q2 and is set to be
∆Γ γ(x,Q2, P 2) = δ(1 − x). For later convenience we use,
instead of ∆qi, the flavor singlet and non-singlet combina-
tions of the spin-dependent quark distributions as follows:

∆qγS ≡
∑
i

∆qi,

∆qγNS ≡
∑
i

e2i

(
∆qi − ∆qγS

Nf

)
. (2.1)



K. Sasaki, T. Uematsu: Factorization scheme and parton distributions in the polarized virtual photon target 285

In terms of these parton distributions, the polarized vir-
tual photon structure function gγ1 (x,Q

2, P 2) is expressed
in the QCD improved parton model as [23]

gγ1 (x,Q
2, P 2)

=
∫ 1

x

dy
y

{
∆qγS(y,Q

2, P 2)∆CγS

(
x

y
,Q2

)
+∆Gγ(y,Q2, P 2)∆CγG

(
x

y
,Q2

)
+∆qγNS(y,Q

2, P 2)

× ∆CγNS

(
x

y
,Q2

)}
+∆Cγγ (x,Q

2), (2.2)

where ∆CγS (∆CγNS), ∆CγG, and ∆Cγγ are the coefficient
functions corresponding to the singlet (non-singlet) quark,
gluon, and photon, respectively, and these are independent
of P 2. The Mellin moments of gγ1 are written as

gγ1 (n,Q
2, P 2) = ∆C̃

γ
(n,Q2) · ∆q̃γ(n,Q2, P 2), (2.3)

where

∆C̃
γ
(n,Q2) = (∆CγS , ∆CγG, ∆CγNS, ∆Cγγ ),

∆q̃γ(n,Q2, P 2) = (∆qγS , ∆Gγ , ∆qγNS, ∆Γ γ),

and the matrix notation is implicit.
The explicit expressions of ∆qγS , ∆Gγ , and ∆qγNS up to

NLO can be derived from (4.46) of [23], which are given
in AppendixA. They are written1 in terms of one- (two-
) loop hadronic anomalous dimensions ∆γ0,nij (∆γ

(1),n
ij )

(i, j = ψ,G) and ∆γ0,nNS (γ(1),nNS ), one- (two-) loop anoma-
lous dimensions ∆K0,n

i (∆K
(1),n
i ) (i = ψ,G,NS) which

represent the mixing between photon and three hadronic
operators Rni (i = ψ,G,NS), and finally ∆Ani , the one-
loop photon matrix elements of the hadronic operators
renormalized at µ2 = P 2(= −p2),

〈γ(p) | Rni (µ) | γ(p)〉|µ2=P 2 =
α

4π
∆Ani (i = ψ,G,NS).

(2.4)
The photon matrix elements ∆Ani are scheme-depen-

dent. In one-loop order, they are given, in the MS scheme,
by [34]

∆An
ψ,MS =

〈e2〉
〈e4〉 − 〈e2〉2∆AnNS,MS

= 12〈e2〉Nf

{
n − 1

n(n+ 1)
S1(n) +

4
(n+ 1)2

− 1
n2

− 1
n

}
, (2.5)

∆An
G,MS = 0,

where S1(n) =
∑n
j=1(1/j).

1 We use the same notations as in [23], except that the sym-
bol ∆ has been appended to all the spin-dependent anomalous
dimensions, coefficient functions and photon matrix elements

3 Factorization schemes

3.1 Rules for the transformation
from the MS scheme to the a-scheme

Although gγ1 is a physical quantity and thus is unique,
there remains a freedom in the factorization of gγ1 into
∆C̃

γ
and ∆q̃γ . Given the formula (2.3), we can always

redefine ∆C̃
γ

and ∆q̃γ as follows [41]:

∆C̃
γ
(n,Q2) → ∆C̃

γ
(n,Q2)|a

≡ ∆C̃
γ
(n,Q2)Z−1

a (n,Q2), (3.1)
∆q̃γ(n,Q2, P 2) → ∆q̃(n,Q2, P 2)|a

≡ Za(n,Q2)∆q̃γ(n,Q2, P 2), (3.2)

where ∆C̃
γ |a and ∆q̃|a correspond to the quantities in a

new factorization scheme a. Note that the coefficient func-
tions and anomalous dimensions are closely connected un-
der factorization. We will study the factorization-scheme
dependence of the parton distribution up to NLO, by
which we mean that a scheme transformation for the co-
efficient functions is considered up to the one-loop order,
since a NLO prediction for gγ1 is given by the one-loop
coefficient functions and anomalous dimensions up to the
two-loop order.

The most general form of a transformation for the co-
efficient functions in one-loop order, from the MS scheme
to a new factorization scheme a, is given by

∆Cγ,nS,a = ∆Cγ,n
S,MS

− 〈e2〉αs
2π

∆wS(n, a),

∆Cγ,nG,a = ∆Cγ,n
G,MS

− 〈e2〉αs
2π

∆z(n, a),

∆Cγ,nNS,a = ∆Cγ,n
NS,MS

− αs
2π

∆wNS(n, a), (3.3)

∆Cγ,nγ,a = ∆Cγ,n
γ,MS

− α

π
3〈e4〉∆ẑ(n, a),

where 〈e4〉 =
∑
i e
4
i /Nf . The flavor singlet (non-singlet)

quark coefficient functions are expanded up to the one-
loop order as

∆Cγ,nS = 〈e2〉
(
1 +

αs
4π

∆Bn
S + O(α2s )

)
, (3.4)

∆Cγ,nNS = 1 +
αs
4π

∆Bn
NS + O(α2s ),

with ∆Bn
S = ∆Bn

NS. The ∆z(n, a) (∆ẑ(n, a)) term tells
how much of the QCD (QED) axial anomaly effect is
transferred to the coefficient function in the new factoriza-
tion scheme. The gluon and photon coefficient functions
∆Cγ,nG and ∆Cγ,nγ start from the one-loop order (i.e., from
the NLO):

∆Cγ,nG = 〈e2〉
(αs
4π

∆Bn
G + O(α2s )

)
,

∆Cγ,nγ =
α

4π
3Nf 〈e4〉(∆Bn

γ + O(αs)). (3.5)

In the MS scheme, ∆Cγ,n
γ,MS

has been obtained from
∆Cγ,n

G,MS
, but with changes: αs/2π → (2α/αs) × (αs/2π),

〈e2〉 → 3〈e4〉, and 3 is the number of colors. Thus we have
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Z−1
a (n, Q2) = I −




αs
2π∆wS(n, a) αs

2π∆z(n, a) 0 α
π
3〈e2〉∆ẑ(n, a)

0 0 0 0
0 0 αs

2π∆wNS(n, a) α
π
3(〈e4〉 − 〈e2〉2)∆ẑ(n, a)

0 0 0 0


 , (3.8)

∆P̃ (n, Q2) =




∆Pψψ(n, Q2) ∆PψG(n, Q2) 0 ∆kS(n, Q2)
∆PGψ(n, Q2) ∆PGG(n, Q2) 0 ∆kG(n, Q2)

0 0 ∆PNS(n, Q2) ∆kNS(n, Q2)
0 0 0 0


 . (3.10)

∆Bn
γ,MS =

2
Nf

∆Bn
G,MS. (3.6)

Since, in the leading order, the coefficient functions are
given by

∆Cγ

MS
|LO = ∆Cγ

a|LO = (〈e2〉, 0, 1, 0), (3.7)

the relations (3.3) between the coefficient functions in the
a-scheme and the MS scheme lead to Z−1

a (n,Q2), which
is expressed as (see (3.8) on top of page the page) where
I is a 4 × 4 unit matrix.

Now we derive the corresponding rules for the trans-
formation from the MS scheme to the a-scheme for the
relevant two-loop anomalous dimensions. The parton dis-
tribution functions ∆q̃γ(n,Q2, P 2) satisfy the following
evolution equation [39,41–44]:

d∆q̃γ(n,Q2, P 2)
dlnQ2

= ∆P̃ (n,Q2)∆q̃γ(n,Q2, P 2), (3.9)

where (see (3.10) on top of the page) From (3.2) we obtain

d∆q̃γ(n,Q2, P 2)|a
dlnQ2

=
dZa(n,Q2)

dlnQ2
∆q̃γ(n,Q2, P 2)|MS

+ Za(n,Q2)
d∆q̃γ(n,Q2, P 2)|MS

dlnQ2

= ∆P̃ (n,Q2)|a∆q̃γ(n,Q2, P 2)|a,
(3.11)

with

∆P̃ (n,Q2)|a =
[
dZa(n,Q2)

dlnQ2
(3.12)

+ Za(n,Q2)∆P̃ (n,Q2)|MS
]
Z−1
a (n,Q2).

The splitting functions ∆Pi(n,Q2) (i = ψψ,ψG,Gψ,GG,
and NS) and ∆kj(n,Q2) (j = S, G,NS) are expanded as

∆Pi(n,Q2) =
αs(Q2)

2π
∆P

(0)
i (n)

+
[
αs(Q2)

2π

]2
∆P

(1)
i (n) + · · · , (3.13)

∆kj(n,Q2) =
α

2π
∆k

(0)
j (n) +

ααs(Q2)
(2π)2

∆k
(1)
j (n) + · · ·

(3.14)

Since the QCD effective coupling constant αs(Q2) satisfies

dαs(Q2)
dlnQ2

= −β0
αs(Q2)2

4π
+ · · · , (3.15)

where β0 = 11− (2/3)Nf is the one-loop coefficient of the
QCD beta function, and the nth anomalous dimensions
are defined as

∆P
(0)
i (n) = −1

4
∆γ0,ni , ∆P

(1)
i (n) = −1

8
∆γ

(1),n
i , (3.16)

∆k
(0)
j (n) =

1
4
∆K0,n

j , ∆k
(1)
j (n) =

1
8
∆K

(1),n
j , (3.17)

we find for one loop

∆γ0,ni,a = ∆γ0,n
i,MS

, ∆K0,n
j,a = ∆K0,n

j,MS
, (3.18)

and for two loops

∆γ
(1),n
ψψ,a = ∆γ

(1),n
ψψ,MS

+ 2∆z(n, a)∆γ0,nGψ + 4β0∆wS(n, a),

∆γ
(1),n
ψG,a = ∆γ

(1),n
ψG,MS

+ 2∆z(n, a)[∆γ0,nGG − ∆γ0,nψψ + 2β0]

+ 2∆wS(n, a)∆γ0,nψG,

∆γ
(1),n
Gψ,a = ∆γ

(1),n
Gψ,MS

− 2∆wS(n, a)∆γ0,nGψ ,

∆γ
(1),n
GG,a = ∆γ

(1),n
GG,MS

− 2∆z(n, a)∆γ0,nGψ ,

∆γ
(1),n
NS,a = ∆γ

(1),n
NS,MS

+ 4β0∆wNS(n, a), (3.19)

∆K
(1),n
S,a = ∆K

(1),n
S,MS

+ 2∆wS(n, a)∆K0,n
S

+ 4∆ẑ(n, a)3〈e2〉∆γ0,nψψ ,

∆K
(1),n
G,a = ∆K

(1),n
G,MS

+ 4∆ẑ(n, a)3〈e2〉∆γ0,nGψ ,

∆K
(1),n
NS,a = ∆K

(1),n
NS,MS

+ 2∆wNS(n, a)∆K0,n
NS

+ 4∆ẑ(n, a)3(〈e4〉 − 〈e2〉2)∆γ0,nNS .

The one-loop photon matrix elements of the hadronic
operators, ∆Anψ and ∆AnNS in (2.4), are related to each
other by

∆AnNS = ∆Anψ
〈e4〉 − 〈e2〉2

〈e2〉 , (3.20)

and the sum(
∆Cγ,nγ /

α

4π
+ 〈e2〉∆Anψ +∆AnNS

)
(3.21)
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is factorization-scheme independent in one-loop order [23].
Thus we obtain from (3.3)

∆Anψ,a = ∆An
ψ,MS + 12〈e2〉∆ẑ(n, a),

∆AnG,a = ∆An
G,MS = 0, (3.22)

∆AnNS,a = ∆AnNS,MS + 12(〈e4〉 − 〈e2〉2)∆ẑ(n, a).

Note that ∆AnG = 0 in one-loop order.
It is possible to choose ∆z(n, a) and ∆ẑ(n, a) arbitrar-

ily. In the following, we take ∆ẑ(n, a) = ∆z(n, a) in the
CI-like schemes and ∆ẑ(n,DISγ) �= ∆z(n,DISγ) = 0 in
the DISγ scheme. In one-loop order we have ∆wS(n, a) =
∆wNS(n, a). Thus from now on we set ∆wS(n, a) =
∆wNS(n, a) ≡ ∆w(n, a). Let us now discuss the features
of several factorization schemes.

3.2 The MS scheme

This is the only scheme in which both relevant one-loop
coefficient functions and two-loop anomalous dimensions
were actually calculated [34,45–47]. In fact, there still re-
main ambiguities in the MS scheme, depending on how
to handle γ5 in n dimensions. The MS scheme we have
here is the one due to Mertig and van Neerven [46] and
Vogelsang [47], in which the first moment of the non-
singlet quark operator vanishes, corresponding to the con-
servation of the non-singlet axial current. Indeed, we have
∆γ

(1),n=1
NS,MS

= 0. Explicit expressions of the relevant one-
loop coefficient functions and two-loop anomalous dimen-
sions can be found, for example, in the appendix of [23]. It
is noted that in the MS scheme both the QCD and QED
axial anomalies reside in the quark distributions and not
in the gluon and photon coefficient functions. In fact, we
observe

∆γ
(1),n=1
ψψ,MS

= 24CFTf �= 0, (3.23)

∆Bn=1
G,MS = ∆Bn=1

γ,MS = 0. (3.24)

where CF = 4/3 and Tf = Nf/2. Also we find from (2.5)
that the first moments of the one-loop photon matrix el-
ements of the quark operators get non-zero values, i.e.,

∆An=1
ψ,MS =

〈e2〉
〈e4〉 − 〈e2〉2∆An=1NS,MS = −12〈e2〉Nf , (3.25)

which is due to the QED axial anomaly.

3.3 The CI-like schemes

The EMC measurement [48] of the first moment of the
proton spin structure function gp1(x,Q

2) presented us with
the issue called the “proton spin crisis”. Since then many
ideas have been proposed as solutions. One simple and
plausible explanation was that there exists an anomalous
gluon contribution to the first moment [31–33] originat-
ing from the QCD axial anomaly. This explanation was

later [34] supported with the notion of the factorization-
scheme dependence. There is a set of factorization schemes
in which we obtain

∆Bn=1
G = −2Nf , ∆γ

(1),n=1
ψψ = 0. (3.26)

Let us call these CI-like schemes. In this paper we con-
sider four CI-like schemes, in which we take ∆z(n, a) =
∆ẑ(n, a), since both QCD and QED anomalies originate
from similar triangle diagrams. With this choice, the re-
lation between the one-loop gluon and photon coefficient
functions, which holds in the MS scheme, also holds in the
CI-like schemes,

∆Bn
γ,CI−like =

2
Nf

∆Bn
G,CI−like. (3.27)

Thus, in addition to the relations in (3.26), we obtain in
the CI-like schemes

∆Bn=1
γ,CI−like = −4, ∆An=1ψ,CI−like = ∆An=1NS,CI−like = 0.

(3.28)
(i) The chirally invariant (CI) scheme. In this scheme the
factorization of the photon–gluon (photon–photon) cross
section into the hard and soft parts is made so that chi-
ral symmetry is respected [37,38] and the QCD and QED
anomaly effects are absorbed into the gluon and photon
coefficient functions. Thus the spin-dependent quark dis-
tributions in the CI scheme are anomaly-free. The trans-
formation from the MS scheme to the CI scheme is
achieved by

∆w(n, a = CI) = 0,

∆z(n, a = CI) = ∆ẑ(n, a = CI) = 2Nf
1

n(n+ 1)
. (3.29)

It has been argued by Cheng [37] and Müller and Teryaev
[38] that the x-dependence of the axial anomaly effect is
uniquely fixed and that its x-behavior leads to the trans-
formation rule (3.29) and thus to the CI scheme.
(ii) The Adler–Bardeen (AB) scheme. Ball, Forte and Ri-
dolfi [36] proposed several CI-like schemes for the analysis
of the nucleon spin structure function g1(x,Q2). One of
them is the Adler–Bardeen (AB) scheme which was intro-
duced by requiring that the change from the MS scheme
to this scheme be independent of x, so that the large-
and small-x behavior of the gluon coefficient function is
unchanged. In our case, we have in moment space

∆w(n, a = AB) = 0,

∆z(n, a = AB) = ∆ẑ(n, a = AB) = Nf
1
n
. (3.30)

(iii) The off-shell (OS) scheme. In this scheme [36] we
renormalize operators while keeping the incoming particle
off shell, p2 �= 0, so that at the renormalization (factor-
ization) point, µ2 = −p2, the finite terms vanish. This is
exactly the same as “the momentum subtraction scheme”
which was used some time ago to calculate, for instance,
the polarized quark and gluon coefficient functions [49,
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30]. The CI-relations in (3.26) and (3.28) also hold in the
OS scheme2, since the axial anomaly appears as a finite
term in the calculation of the triangle graph for jµ5 be-
tween the external gluons (photons) and the finite term is
thrown away in this scheme. The transformation from the
MS scheme to the OS scheme is made by choosing

∆w(n, a = OS) = CF
{
[S1(n)]2 + 3S2(n)

−S1(n)
(

1
n

− 1
(n+ 1)

)
−7

2
+

2
n

− 3
n+ 1

− 1
n2

+
2

(n+ 1)2

}
,

∆z(n, a = OS) = ∆ẑ(n, a = OS)

= Nf

{
− n − 1
n(n+ 1)

S1(n) +
1
n

+
1
n2

− 4
(n+ 1)2

}
. (3.31)

It is noted that in the OS scheme we have ∆Anψ,OS =
∆AnNS,OS = 0 not only for n = 1 but for all n.
(iv) The Altarelli–Ross (AR) scheme. Using a massive
quark as a regulator for collinear divergence, Altarelli and
Ross [31,50] derived the same one-loop gluon coefficient
function ∆CγG as in the case of the CI scheme. In order
to obtain the one-loop quark coefficient function in this
scheme, however, we need to do an extra subtraction so
that the conservation of the non-singlet axial currents is
secured [51]. The transformation rule is

∆wS(n, a = AR) = CF
{
2[S1(n)]2 + 2S2(n)

− S1(n)
(

2
n

− 2
n+ 1

+ 2
)

(3.32)

− 2 +
1
n

− 1
n+ 1

+
2

(n+ 1)2

}
,

∆z(n, a = AR) = ∆ẑ(n, a = AR) = 2Nf
1

n(n+ 1)
.

(3.33)

3.4 The DISγ scheme

An interesting factorization scheme, which is called DISγ ,
was introduced some time ago in the NLO analysis of
the unpolarized real photon structure function F γ2 (x,Q2).
Glück, Reya and Vogt [39] observed that, in the MS
scheme, the ln(1−x) term in the photonic coefficient func-
tion Cγ2 (x) for F γ2 , which becomes negative and divergent
for x → 1, drives the “point-like” part of F γ2 to large
negative values as x → 1, leading to a strong difference
between the LO and the NLO results for F γ2,point−like in
the large-x region. They introduced the DISγ scheme in
which the photonic coefficient function Cγ2 , i.e., the direct-
photon contribution to F γ2 , is absorbed into the photonic

2 In fact, the author of [30] treated the n = 1 moment of the
gluon coefficient function differently from other moments. See
also Appendix C.2 of [23]

quark distributions. It is noted that, for the real photon
target, the structure function F γ2 is decomposed into a
“point-like” and a “hadronic” part, the former being per-
turbatively calculable but the latter not. And beyond the
LO both the “point-like” and the “hadronic” parts depend
on the factorization scheme employed. A similar situation
occurs in the polarized case, and the DISγ scheme was ap-
plied to the NLO analysis for the spin-dependent structure
function gγ1 (x,Q

2) of the real photon target by Stratmann
and Vogelsang [18].

In the polarized version of the DISγ scheme we take

∆ wS(n,DISγ)
= ∆wNS(n,DISγ) = ∆z(n,DISγ) = 0, (3.34)

∆ ẑ(n,DISγ)

=
Nf

4
∆Bn

γ,MS

= Nf

{
− n − 1
n(n+ 1)

S1(n) +
3
n

− 4
n+ 1

− 1
n2

}
, (3.35)

so that

∆Bn
γ,DISγ

= ∆Bn
γ,MS − 4

Nf
∆ẑ(n,DISγ)

= 0. (3.36)

Note that the relation à la (3.6) and (3.27) in the MS
and CI-like factorization schemes does not hold anymore
in this scheme, i.e.,

∆Bn
γ,DISγ

�= 2
Nf

∆Bn
G,DISγ

(
=

2
Nf

∆Bn
G,MS

)
. (3.37)

For n = 1, we have

∆ẑ(n = 1,DISγ) = 0, (3.38)

and thus, together with (3.34), we observe that as far as
the first moments are concerned, DISγ scheme gives the
same results with MS. In other words, in the DISγ scheme,
both the QCD and QED axial anomaly effects are retained
in the quark distributions.

With these preparations, we now examine the factor-
ization-scheme dependence of the polarized parton distri-
butions in the virtual photon. The two-loop anomalous
dimensions of the spin-dependent operators and one-loop
photon matrix elements of the hadronic operators in the
MS scheme are already known. Corresponding quantities
in a particular scheme are obtained through the transfor-
mation rules given in (3.19). Inserting these quantities into
the formulas given in AppendixA, we get the NLO pre-
dictions for the moments of polarized parton distributions
in a particular factorization scheme.

3.5 Gluon distribution in the virtual photon

Let us start with the gluon distribution. We find that all
the factorization schemes which we consider in this paper
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predict the same behavior for the gluon distribution up to
NLO:

∆Gγ(n,Q2, P 2)|a = ∆Gγ(n,Q2, P 2)|MS, (3.39)

where a means the factorization schemes of CI, AB, OS,
AR and DISγ . This can be seen from the direct calcula-
tion or from the notion that, up to NLO, ∆Gγ |a satisfies
the same evolution equation as ∆Gγ |MS with the same
initial condition at Q2 = P 2, namely, ∆Gγ(n, P 2, P 2)|a =
∆Gγ(n, P 2, P 2)|MS = 0.

If we consider a more general factorization scheme in
which the hadronic part of Z−1

a (n,Q2) in (3.1) is replaced
with a new one as follows:(

1 − αs
2π∆wS −αs

2π∆z
0 1

)
=⇒

(
1 − αs

2π∆wS −αs
2π∆z

−αs
2π∆u 1 − αs

2π∆v

)
, (3.40)

then, in this new factorization scheme, the predicted gluon
distribution is not the same as ∆Gγ(n,Q2, P 2)|MS in
NLO. However, the first moment is found to be still the
same. In other words, the first moment of the gluon dis-
tribution in the virtual photon, ∆Gγ(n = 1, Q2, P 2), is
factorization-scheme independent up to NLO. This is due
to the fact that the new terms, which appear by the in-
clusion of ∆u and ∆v, will be proportional to ∆K0,n

ψ and
that ∆K0,n=1

ψ = 0. Also, the inclusion of ∆u and ∆v

terms in Z−1
a does not modify the photon structure func-

tion gγ1 (x,Q
2, P 2) itself up to NLO, since the gluon coeffi-

cient function starts in the order αs. Moreover, the quark
distributions in the virtual photon do not change by the
inclusion of ∆u and ∆v terms.

4 The n = 1 moments
of the parton distributions

The first moments of the polarized parton distributions in
the virtual photon are particularly interesting since they
have relevance to the QCD and QED axial anomalies. The
explicit expressions for the moments of ∆qγS , ∆Gγ , and
∆qγNS up to NLO are given in AppendixA. We take the
n → 1 limit in these expressions. Useful n = 1 moments of
one- and two-loop anomalous dimensions, photon matrix
elements, and coefficient functions both in the MS and
CI-like schemes are enumerated in AppendixB. As far as
the first moments are concerned, the DISγ scheme gives
the same results as MS. Note that we have

λn=1+ = 0, λn=1− = −2β0, λn=1NS (= ∆γ0,n=1NS ) = 0,
(4.1)

where λn=1± are eigenvalues of the one-loop hadronic
anomalous dimension matrix ∆γ0,n=1ij . The zero eigenval-
ues λn=1+ = λn=1NS = 0 correspond to the conservation of
the axial-vector current at one-loop order.

4.1 The n = 1 moment of the gluon distribution

The expressions for the moments of the gluon distribution
are given in AppendixA.2. In these expressions the factors

1
λn+

,
1

2β0 + λn−
,

1
2β0 + λn− − λn+

, (4.2)

may develop singularities at n = 1 and so we need to take
a little care when we deal with them. Taking the limit of
n going to 1, we find

L̂+nG → 0, L̂−n
G → finite,

Â+nG → finite, B̂+nG → 0, B̂−n
G → finite, (4.3)

Â−n
G → 72〈e2〉NfCF .

The terms proportional to L̂−n
G , B̂−n

G , and Â+nG all van-
ish in the n = 1 limit, since they are multiplied by the
following vanishing factors:{

1 −
[
αs(Q2)
αs(P 2)

]λn
−/2β0+1

}
,

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0

}
.

(4.4)
The only exception is the term proportional to Â−n

G . We
find for n → 1

Â−n
G

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0

}

→ 72〈e2〉NfCF
αs(Q2) − αs(P 2)

αs(Q2)
. (4.5)

Thus we obtain

∆Gγ(n = 1, Q2, P 2) =
12α
πβ0

〈e2〉Nf
αs(Q2) − αs(P 2)

αs(Q2)
(4.6)

for the first moment of the gluon distribution in the vir-
tual photon. It should be emphasized that this result is
factorization-scheme independent.

4.2 The n = 1 moment of the quark distributions

The expressions for the moments of the quark distribu-
tions are given in AppendixA.1 and A.3. In all the factor-
ization schemes under study, i.e., the MS, DISγ and the
CI-like schemes, we find for n → 1

L̂+nS → 0, L̂−n
S → 0, L̂nNS → 0,

Â+nS → finite, Â−n
S → 0, ÂnNS → finite, (4.7)

B̂+nS → 0, B̂−n
S → finite, B̂n

NS → 0.

The terms proportional to Â+nS and B̂−n
S are multiplied

by the vanishing factors in (4.4), and the ÂnNS term is
multiplied by {

1 −
[
αs(Q2)
αs(P 2)

]λn
NS/2β0

}
, (4.8)
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and, therefore, the L̂+nS , L̂−n
S , L̂nNS, Â

+n
S , Â−n

S , ÂnNS, B̂
+n
S ,

B̂−n
S , and B̂n

NS terms in (A.1) and (A.17) all vanish in
the n = 1 limit. Then the first moments of the quark
distributions are given by

∆qγS(n = 1, Q2, P 2) =
α

8πβ0
Ĉn=1S =

α

4π
∆An=1ψ , (4.9)

∆qγNS(n = 1, Q2, P 2) =
α

8πβ0
Ĉn=1NS =

α

4π
∆An=1NS . (4.10)

We now see that scheme dependence for the first moments
of the quark distributions is coming from the photon ma-
trix elements ∆Anψ and ∆AnNS.

In the case of CI-like factorization schemes, a = CI,
AB,OS,AR, we have

∆w(n = 1, a) = 0,
∆z(n = 1, a) = ∆ẑ(n = 1, a) = Nf ,

for a = CI,AB,OS,AR. (4.11)

We find from (3.22) and (3.25) that these schemes give

∆An=1ψ,a = ∆An=1NS,a = 0. (4.12)

This leads to an interesting result: The first moment of
spin-dependent quark distributions in the virtual photon
vanish in NLO for a = CI,AB,OS,AR. We have

∆qγS(n = 1, Q2, P 2)|a = ∆qγNS(n = 1, Q2, P 2)|a = 0.
(4.13)

The vanishing first moments imply that the axial anomaly
effects do not reside in the quark distributions. In these
CI-like schemes, the QCD and QED axial anomalies are
transfered to the gluon and photon coefficient functions,
respectively, and their first moments do not vanish. Indeed
we obtain from (3.1) and (3.8)

∆Cγ,n=1G,a = −〈e2〉αs(Q
2)

2π
Nf , (4.14)

∆Cγ,n=1γ,a = −3α
π

〈e4〉Nf

(
1 − αs(Q2)

π

)
,

for a = CI,AB,OS,AR, (4.15)

where we have used [45,52,23]

1
〈e2〉∆Cγ,n=1S |MS = ∆Cγ,n=1NS |MS

= 1 − αs
π

+ O(α2s), (4.16)

∆Cγ,n=1γ |MS = 0 + O(αα2s). (4.17)

On the other hand, in the MS (and also in the DISγ)
case we obtain from (2.5)

∆An=1
ψ,MS = −12〈e2〉Nf , (4.18)

∆An=1NS,MS = −12(〈e4〉 − 〈e2〉2)Nf , (4.19)

and thus ∆qγ,n=1S |MS and ∆qγ,n=1NS |MS are non-zero con-
stant. Actually we can go one step further to in the order

of the αs QCD corrections. This is due to the fact that, in
the MS scheme, the parton distribution ∆qγ(n = 1)|MS =
(∆qγS , ∆Gγ , ∆qγNS)|MS satisfies a homogeneous differential
equation without inhomogeneous LO and NLO ∆K terms.
Indeed, we find

∆qγS(n = 1, Q2, P 2)|MS
=
[
−α

π
3〈e2〉Nf

]{
1 − 2

β0

αs(P 2) − αs(Q2)
π

Nf

}
, (4.20)

∆qγNS(n = 1, Q2, P 2)|MS
=
[
−α

π
3(〈e4〉 − 〈e2〉2)Nf

] {
1 + O(α2s )

}
, (4.21)

the derivation of which is shown in AppendixC. In the MS
scheme, the axial anomaly effects are retained in the quark
distributions. The factors

[−(α/π)3〈e2〉Nf

]
and [−(α/π)

3(〈e4〉 − 〈e2〉2)Nf

]
are related to the QED axial anomaly

and a term (2/β0)(αs(P 2) − αs(Q2))/πNf in ∆qγ,n=1S |MS
is coming from the QCD axial anomaly.

4.3 The n = 1 moment of gγ
1 (x, Q2, P 2)

The polarized structure function gγ1 (x,Q
2, P 2) of the vir-

tual photon satisfies the following sum rule [20,23]:∫ 1

0
dxgγ1 (x,Q

2, P 2)

= −3α
π

〈e4〉Nf

(
1 − αs(Q2)

π

)
+

6α
πβ0

[〈e2〉Nf ]2
αs(P 2) − αs(Q2)

π
+ O(α2s ). (4.22)

This sum rule is of course factorization-scheme indepen-
dent. Now we examine how the scheme-dependent parton
distributions contribute to this sum rule. In the CI-like
schemes (a = CI,AB,OS,AR), the first moment of the
quark distributions vanish in NLO, and thus the contri-
bution to the sum rule comes from the gluon and photon
distributions. Equations (4.6) and (4.15) show that

∆Cγ,n=1G,a ∆Gγ(n = 1, Q2, P 2)|a +∆Cγ,n=1γ,a (4.23)

leads to the result (4.22). On the other hand, in the MS
scheme (and also in DISγ), the one-loop gluon and photon
coefficient functions vanish, ∆Bn=1

G,MS
= ∆Bn=1

γ,MS
= 0 and,

therefore, the sum rule is derived from the quark contri-
butions. Indeed we find from (4.16), (4.20)–(4.21)

∆Cγ,n=1
S,MS

∆qγS(n = 1, Q2, P 2)|MS
+∆Cγ,n=1

NS,MS
∆qγNS(n = 1, Q2, P 2)|MS (4.24)

leads to the same result.
It is interesting to note that the sum rule (4.22) is

the consequence of the QCD and QED axial anomalies
and that in the CI-like schemes the anomaly effect resides
in the gluon contribution while in MS, it is in the quark
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contributions. Furthermore, the first term of the sum rule
(4.22) is coming from the QED axial anomaly and the
second one is from the QCD axial anomaly3.

5 Behaviors of parton distributions
near x = 1

The behaviors of the parton distributions near x = 1
are governed by the large-n limit of those moments. In
the leading order, parton distributions are factorization-
scheme independent. For large n, ∆qγS(n,Q

2, P 2)|LO and
∆qγNS(n,Q

2, P 2)|LO behave as 1/(nlnn), while ∆Gγ(n,Q2,
P 2)|LO ∝ 1/(nlnn)2. Thus in x space, the parton distri-
butions vanish for x → 1. In fact, we find

∆qγS(x,Q
2, P 2)|LO ≈ α

4π
4π

αs(Q2)
Nf 〈e2〉94

−1
ln(1 − x)

,

(5.1)

∆Gγ(x,Q2, P 2)|LO ≈ α

4π
4π

αs(Q2)
Nf 〈e2〉12

−lnx
ln2(1 − x)

.

(5.2)

The behaviors of ∆qγNS(x,Q
2, P 2) for x → 1, both in LO

and NLO, are always given by the corresponding expres-
sions for ∆qγS(x,Q

2, P 2) with replacement of the charge
factor 〈e2〉 with (〈e4〉 − 〈e2〉2).

In the MS scheme, the moments of the NLO parton
distributions are written in the large-n limit as

∆qγS(n,Q
2, P 2)|NLO,MS −→ α

4π
Nf 〈e2〉6 lnn

n
, (5.3)

∆Gγ(n,Q2, P 2)|NLO,MS −→ α

4π
Nf 〈e2〉3 1

n2
. (5.4)

So we have near x = 1

∆qγS(x,Q
2, P 2)|NLO,MS ≈ α

4π
Nf 〈e2〉6[−ln(1 − x)], (5.5)

∆Gγ(x,Q2, P 2)|NLO,MS ≈ α

4π
Nf 〈e2〉3[−lnx]. (5.6)

It is remarkable that, in the MS scheme, the quark parton
distributions, ∆qγS(x)|NLO,MS and ∆qγNS(x)|NLO,MS, pos-
itively diverge as [−ln(1 − x)] for x → 1. Recall that
∆Gγ(x,Q2, P 2)|NLO is the same among the schemes which
we consider in this paper. The NLO quark distributions in
the CI, AB, AR and DISγ schemes also diverge as x → 1,
since their moments behave as lnn/n in the large-n limit.
We find for large x

∆qγS(x,Q
2, P 2)|NLO,CI

≈ α

4π
Nf 〈e2〉6[−ln(1 − x)], (5.7)

∆qγS(x,Q
2, P 2)|NLO,AB

≈ α

4π
Nf 〈e2〉6[−ln(1 − x) + 2], (5.8)

∆qγS(x,Q
2, P 2)|NLO,AR

3 This notion was first pointed out by the authors of [20]

≈ α

4π
Nf 〈e2〉18[−ln(1 − x)], (5.9)

∆qγS(x,Q
2, P 2)|NLO,DISγ

≈ α

4π
Nf 〈e2〉6ln(1 − x). (5.10)

It is noted that ∆qγS(x,Q
2, P 2)|NLO,DISγ negatively di-

verges as x → 1. This is due to the fact that the photonic
coefficient function ∆Cγγ (x), which in MS becomes nega-
tive and divergent for x → 1, is absorbed into the quark
distributions in the DISγ scheme.

On the other hand, the OS scheme gives quite different
behaviors near x = 1 for the quark distributions. Since the
typical two-loop anomalous dimensions in the OS scheme
behave in the large-n limit as

∆γ
(1),n
NS,OS ∼ ∆γ

(1),n
qq,OS ∝ ln2n, ∆K

(1),n
S,OS ∝ lnn

n
, (5.11)

while in the MS scheme

∆γ
(1),n
NS,MS

∼ ∆γ
(1),n
qq,MS

∝ lnn, ∆K
(1),n
S,MS

∝ ln2n
n

, (5.12)

we find that the moment of ∆qγS(n,Q
2, P 2)|NLO in the OS

scheme is expressed in the large-n limit as

∆qγS(n,Q
2, P 2)|NLO,OS −→ α

4π
Nf 〈e2〉

[
69
8

+
3
4
Nf

]
1
n
.

(5.13)
In x space, ∆qγS(x,Q

2, P 2)|NLO,OS does not diverge for
x → 1 but approaches a constant value:

∆qγS(x,Q
2, P 2)|NLO,OS −→ α

4π
Nf 〈e2〉

[
69
8

+
3
4
Nf

]
.

(5.14)
Therefore, as far as the large-x behaviors of the quark
distributions, and gluon and photon coefficient functions
(see (5.18)–(5.19) below) are concerned, the OS scheme
is more appropriate than other schemes in the sense that
they remain finite. Also the quark coefficient function in
the OS scheme has a milder divergence for x → 1 than
those predicted in other schemes (see (5.17)).

Before ending this section, we now show that, as x → 1,
the polarized virtual photon structure function gγ1 (x,Q

2,
P 2) approaches a constant value:

κ =
α

4π
Nf 〈e4〉

[
−51

8
+

3
4
Nf

]
(5.15)

in NLO. This result is, of course, factorization-scheme in-
dependent. It is interesting to note that the constant value
κ coincides exactly with the one given in (4.39) of [53],
which was derived as the large-n limit of the moment of
the NLO term b2(x) for the unpolarized structure function
F γ2 [1]. In the leading order, (5.1) tells us that

gγ1 (x,Q
2, P 2)|LO

= 〈e2〉∆qγS(x,Q
2, P 2)|LO +∆qγNS(x,Q

2, P 2)|LO
−→ α

4π
4π

αs(Q2)
Nf 〈e4〉94

−1
ln(1 − x)

, (5.16)
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and thus gγ1 (x,Q
2, P 2)|LO vanishes as x → 1.

In order to analyze the large x-behavior of the next-
leading order, gγ1 (x,Q

2, P 2)|NLO, we need information on
the coefficient functions. Note that ∆Bn

NS|a = ∆Bn
S |a.

They behave, for x → 1, as

∆BS(x)|a −→

2CF

[
2ln(1 − x)

1 − x

]
+

for a = MS,CI,AB,DISγ ,

−2CF

[
2ln(1 − x)

1 − x

]
+

for a = AR,

3CF
−1

(1 − x)+
for a = OS,

(5.17)

∆BG(x)|a −→ 2Nf ln(1 − x) for a = MS,CI,AB,AR,DISγ ,

−4Nf for a = OS,
(5.18)

∆C(x)γγ |a −→
α

4π
〈e4〉12Nf ln(1 − x) for a = MS,CI,AB,AR ,

− α

4π
〈e4〉24Nf for a = OS,

0 for a = DISγ .

(5.19)

The coefficient functions ∆BS(x) and ∆BG(x) are the
same as the ones that appear in the polarized nucleon
structure function g1(x,Q2). ∆BS(x) in all schemes con-
sidered here diverges as x → 1, but the OS scheme gives
a milder divergence for ∆BS(x) than the other schemes.
Also note that ∆BG(x)|OS remains finite as x → 1, but
the ∆BG(x) in other schemes negatively diverge.

Let us write gγ1 (x,Q
2, P 2)|NLO in terms of the partonic

contributions as follows:

gγ1 (x,Q
2, P 2)|NLO

= gγ1 (x)|quarkNLO + gγ1 (x)|gluonNLO +∆Cγγ (x), (5.20)

where

gγ1 (x)|quarkNLO

≡ 〈e2〉∆qγS(x,Q
2, P 2)|NLO +∆qγNS(x,Q

2, P 2)|NLO
+〈e2〉αs(Q

2)
4π

∆BS(x) ⊗ ∆qγS(x,Q
2, P 2)|LO

+
αs(Q2)

4π
∆BNS(x) ⊗ ∆qγNS(x,Q

2, P 2)|LO, (5.21)

gγ1 (x)|gluonNLO

≡ 〈e2〉αs(Q
2)

4π
∆BG(x) ⊗ ∆Gγ(x,Q2, P 2)|LO. (5.22)

Then we find, for x → 1,

gγ1 (x)|quarkNLO −→



− α

4π
〈e4〉12Nf ln(1 − x) for a = MS,CI,AB,AR,

α

4π
〈e4〉Nf

[
141
8

+
3
4
Nf

]
for a = OS,

α

4π
〈e4〉Nf

[
−51

8
+

3
4
Nf

]
for a = DISγ .

(5.23)

The NLO gluon contribution gγ1 (x,Q
2, P 2)|gluonNLO vanishes

faster than (lnx)2 in any scheme under consideration. As
for the NLO quark contribution, gγ1 (x,Q

2, P 2)|quarkNLO in the
MS, CI, AB, AR schemes diverges as [−ln(1 − x)] for
x → 1. However, (5.19) shows that the one-loop photon
coefficient function ∆Cγγ (x) in these schemes also diverges
as [−ln(1 − x)] with opposite sign, and the sum becomes
finite. On the other hand, in the OS scheme, we observe
from (5.23) and (5.19) that both the quark contribution
and the photon coefficient function remain finite as x → 1,
and it is easily seen that the sum

gγ1 (x)|quarkNLO,OS +∆C(x)γγ,OS (5.24)

approaches the constant value κ given in (5.15). In the
DISγ scheme, the NLO quark contribution gγ1 (x)|quarkNLO,DISγ

reaches the finite value κ as x → 1, since ∆C(x)γγ,DISγ
≡

0. In fact, as we see from (5.21), gγ1 (x)|quarkNLO is made up
of two parts, one from ∆qγS(x,Q

2, P 2)|NLO and the other
from ∆BS(x) ⊗ ∆qγS(x,Q

2, P 2)|LO, plus their non-singlet
quark counterparts. In DISγ , both contributions diverge
as x → 1, but with opposite sign, and the sum remains
finite.

The constant value κ in (5.15) is negative unless Nf ≥
9. Consequently, it seems superficially that QCD with
eight flavors or less predicts that the structure function
gγ1 (x,Q

2, P 2) turns out to be negative for x very close
to 1, since the leading term gγ1 (x,Q

2, P 2)|LO vanishes as
x → 1. But the fact is that x cannot reach exactly one.
The constraint (p+ q)2 ≥ 0 gives

x ≤ xmax =
Q2

Q2 + P 2
, (5.25)

and we find

gγ1 (x = xmax, Q
2, P 2)|LO >

α

4π
Nf 〈e4〉 3

CF
β0, (5.26)

and the sum gγ1 (x = xmax, Q
2, P 2)|LO+NLO is indeed pos-

itive.

6 Numerical analysis

The parton distribution functions are recovered from the
moments by the inverse Mellin transformation. In Fig. 2
we plot the factorization-scheme dependence of the singlet
quark distribution ∆qγS(x,Q

2, P 2) beyond the LO in units
of (3Nf 〈e2〉α/π)ln(Q2/P 2). We have taken Nf = 3, Q2 =
30GeV2, P 2 = 1GeV2, and the QCD scale parameter



K. Sasaki, T. Uematsu: Factorization scheme and parton distributions in the polarized virtual photon target 293

0 1

–1

0

1

CI

OS
MS

AB

DISγ

0.5

x

Q2=30 GeV2

P2= 1 GeV2

N f = 3

AR

∆
γ s

2
f

2
α π

2
q 

 (
x,

 Q
  ,

 P
  )

/3
N

  <
e 

 >
 −

 ln
 Q

  /
P

2
2

Fig. 2. Factorization-scheme dependence of the polarized sin-
glet quark distribution ∆qγS(x, Q2, P 2) up to NLO in units
of (3Nf 〈e2〉α/π)ln(Q2/P 2) with Nf = 3, Q2 = 30GeV2,
P 2 = 1GeV2, and the QCD scale parameter Λ = 0.2GeV,
for MS (dash-dotted line), CI (solid line), AB (short-dashed
line), OS (long-dashed line), AR (dashed line) and DISγ (dash-
2dotted line) schemes

Λ = 0.2GeV. All four CI-like (i.e., CI, AB, OS and AR)
curves cross the x-axis nearly at the same point, just below
x = 0.5, while the MS curve crosses above x = 0.5. This is
understandable since we saw from (4.13) and (4.20) that
the first moment of ∆qγS vanishes in the CI-like schemes
while it is negative in the MS scheme. The DISγ curve
crosses the x-axis below x = 0.5, though the first moment
of ∆qγS |DISγ is negative, taking the same value as the one
in the MS scheme. Comparing the DISγ curve at large x

with the MS one, we will see that the rapid dropping of
the DISγ curve as x → 1 drives the crossing point below
x = 0.5.

As x → 1, we observe that the MS, CI, AB, and AR
curves continue to increase. In fact, we see that the MS
and CI curves tend to merge, the AB curve comes above
those two curves, and the AR curve diverges more rapidly
than the other three. On the other hand, the OS and DISγ
curves start to drop at large x. The OS curve continues to
increase till near x = 1, and then starts to drop to reach a
finite positive value. The DISγ curve reaches a maximum
at x ≈ 0.8 and drops to negative values. These behaviors
are inferred from (5.5), (5.7)–(5.10) and (5.14).

Concerning the non-singlet quark distribution ∆qγNS(x,
Q2, P 2), we find that when we take into account the charge
factors, it falls on the singlet quark distribution in almost
the whole x region; namely the two “normalized” distri-
butions ∆q̃γS ≡ ∆qγS/〈e2〉 and ∆q̃γNS ≡ ∆qγNS/(〈e4〉−〈e2〉2)
mostly overlap except at the very small x region. This sit-
uation is the same in all factorization schemes we have
studied in this paper. This is attributable to the fact that
once the charge factors are taken into account, the evo-
lution equations for both ∆q̃γS and ∆q̃γNS have the same
inhomogeneous LO and NLO ∆K terms and the same
initial conditions at Q2 = P 2 (see (3.20)).

In Fig. 3 we plot again the OS and DISγ predictions for
∆qγS(x,Q

2, P 2) together with the LO result. The motiva-
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Fig. 3. The polarized singlet quark distribution ∆qγS(x, Q2,
P 2) up to NLO predicted by the OS and DISγ schemes in
units of (3Nf 〈e2〉α/π)ln(Q2/P 2) for Nf = 3, Q2 = 30GeV2,
P 2 = 1GeV2, and Λ = 0.2GeV, together with the LO result

tion to introduce the DISγ scheme into the analysis of the
unpolarized (polarized) real photon structure function F γ2
(gγ1 ) was to reduce the discrepancies at the large-x region
between the LO and the NLO results for the “point-like”
part of F γ2 (gγ1 ). When applied to the polarized virtual
photon case, it is seen from Figs. 2 and 3 that the DISγ
scheme gives a better behavior for ∆qγS(x,Q

2, P 2) at large
x than MS in the sense that the DISγ curve is closer to the
LO result. However, we observe that absorbing the pho-
tonic coefficient function ∆Cγγ into the quark distributions
in the DISγ scheme has too much effect on their large-x
behaviors: The DISγ curve for ∆qγS(x,Q

2, P 2) goes under
the LO one at x ≈ 0.6 and the difference between the two
grows as x → 1. In fact, the DISγ curve drops to negative
values near at x = 1.

From the viewpoint of “perturbative stabilities” we
find that the OS curve shows a more appropriate behavior
than the other ones. We see from Fig. 3 that the differences
between the OS and LO curves are very small for the range
0.05 < x < 0.7. And the OS curve turns out to lie above
the LO for x > 0.7.

Figure 4 shows theQ2-dependence of ∆qγS(x,Q
2, P 2) in

the OS scheme in units of (3Nf 〈e2〉α/π)ln(Q2/P 2). Three
curves with Q2 = 30, 50 and 100GeV2 almost overlap in
the whole x region except in the vicinity of x = 1. We see
from Fig. 4 that, in the OS scheme, ∆qγS beyond the LO
behaves approximately as the one obtained from the box
(tree) diagram calculation,

∆q
γ(box)
S (x,Q2, P 2) = (2x − 1)3Nf 〈e2〉α

π
ln
Q2

P 2
. (6.1)

The gluon distribution ∆Gγ(x,Q2, P 2) beyond the LO
is shown in Fig. 5 in units of (3Nf 〈e2〉α/π)ln(Q2/P 2), with
three different Q2 values. Recall that every scheme con-
sidered in this paper predicts the same behavior for the
gluon distribution up to NLO. We do not see much dif-
ferences in the three curves with different Q2. This means
that ∆Gγ is approximately proportional to ln(Q2/P 2).
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Fig. 5. The polarized gluon distribution ∆Gγ(x, Q2, P 2) be-
yond the LO in units of (3Nf 〈e2〉α/π)ln(Q2/P 2) with three
different Q2 values, for Nf = 3, P 2 = 1GeV2, and Λ = 0.2GeV

But, compared with the quark distributions, ∆Gγ is very
small in absolute value except in the small-x region.

In Fig. 6 we plot the virtual photon structure function
gγ1 (x,Q

2, P 2) in the NLO for Nf = 3, Q2 = 30GeV2 and
P 2 = 1GeV2 and the QCD scale parameter Λ = 0.2GeV.
The vertical axis corresponds to

gγ1 (x,Q
2, P 2)/

3α
π
Nf 〈e4〉 ln Q2

P 2
. (6.2)

Also shown are the LO result, the box (tree) diagram con-
tribution,

g
γ(box)
1 (x,Q2, P 2) = (2x − 1)

3α
π
Nf 〈e4〉 ln Q2

P 2
, (6.3)

and the box diagram contribution including the non-
leading (NL) correction with mass being ignored,

g
γ(box(NL))
1 (x,Q2, P 2) =

3α
π
Nf 〈e4〉
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Fig. 6. Polarized virtual photon structure function
gγ1 (x, Q2, P 2) up to NLO in units of (3Nfα〈e4〉/π) ln(Q2/P 2)
for Q2 = 30GeV2, and P 2 = 1GeV2 and the QCD scale
parameter Λ = 0.2GeV with Nf = 3 (solid line). We also
plot the LO result (long-dashed line), the box (tree) dia-
gram (2dash-dotted line) and the box including non-leading
contribution, box (NL) (short-dashed line)

×
[
(2x − 1) ln

Q2

P 2
− 2(2x − 1)(lnx+ 1)

]
. (6.4)

In our previous paper [23], there was an error in the pro-
gram for the numerical evaluation of the NLO gγ1 (x,Q

2,
P 2). The corrected graph (NLO curve) here is different
from the corresponding one in Fig. 2 of [23]. The new NLO
curve appears lower than the previous one for x < 0.7 and
rather enhanced above x = 0.7. We observe that the cor-
rected NLO curve remains below the LO one, and that the
NLO QCD corrections are significant at large x as well as
at low x.

For the case of the real photon target, P 2 = 0, the
structure function can be decomposed as

gγ1 (x,Q
2) = gγ1 (x,Q

2)|pert. + gγ1 (x,Q
2)|non−pert.. (6.5)

The first term, the point-like piece, can be calculated by
a perturbative method. Actually, it can be obtained by
setting P 2 = Λ2 in the expressions of parton distribu-
tions in (2.2) or (2.3). The second term can only be com-
puted by some non-perturbative methods. In Fig. 7, we
plot the point-like piece of the real photon gγ1 (x,Q

2) in
the NLO, together with the LO result and the box (tree)
diagram contribution. The NLO curve, which is calculated
by the corrected computer program, is different from the
previous one in Fig. 6 in [23]. The new NLO curve ap-
pears to be lower than the previous one for x < 0.6 and
enhanced above x = 0.6. Also it remains below the LO
curve. The NLO result is qualitatively consistent with the
analysis by Stratmann and Vogelsang [18]. In the unpo-
larized case, the moment of F γ2 has a singularity at n = 2
which leads to the negative structure function at low x.
Thus we need some regularization prescription to recover
a positive structure function as discussed in [54–56]. Note
that we do not have such a complication at n = 1 for the
polarized case.
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Fig. 7. Point-like piece of the real photon structure function
gγ1 (x, Q2) in NLO in units of (3Nfα〈e4〉/π) ln(Q2/Λ2) for Q2 =
30GeV2 with Λ = 0.2GeV, Nf = 3 (solid line). Also plotted
are the LO result (long-dashed line) and the box (tree) diagram
contribution (short-dashed line)

Finally, in our numerical analysis, we took P 2 =
1GeV2, which may not be necessarily large enough for
the non-perturbative effects to be dying away. For our
normalized parton distributions, however, the larger val-
ues of P 2 would not give any sizable change in shape and
magnitude.

7 Conclusion

In the present paper, we have studied in detail the spin-
dependent parton distributions inside the virtual photon,
which can be predicted entirely up to NLO in perturba-
tive QCD. The virtual photon target provides a good test-
ing ground for examining the factorization-scheme depen-
dence of the quark and gluon distributions. We have inves-
tigated the polarized parton distributions in several differ-
ent factorization schemes. We derived the explicit trans-
formation rules from one scheme to another for the coeffi-
cient functions, the finite photon matrix elements and the
two-loop anomalous dimensions or parton splitting func-
tions.

In particular, we studied the QCD and QED axial
anomaly effects on the first moments of the quark dis-
tributions to see the interplay between the axial anoma-
lies and factorization schemes. We find that, in the CI-
like schemes, the first moments of the polarized quark
distributions, both flavor singlet and non-singlet, vanish
in NLO while the standard MS scheme gives a non-zero
value. Also we find that the large-x behaviors of the po-
larized quark distributons dramatically vary from one fac-
torization scheme to another. Indeed, for x → 1, the quark
distributions positively diverge or negatively diverge or re-
main finite, depending on the factorization schemes. The
numerical analyses performed for the parton distributions
reconfirm the above observations. From the viewpoint of
“perturbative stabilities” the OS scheme gives more ap-
propriate behaviors for the quark distributions than the

others. The gluon distribution turns out to be the same
up to NLO among the six factorization schemes examined.
Furthermore, its first moment is found to be factorization-
scheme independent up to NLO.

The same analysis of the factorization-scheme depen-
dence of the unpolarized parton distributions of the virtual
photon can be carried out and will be discussed elsewhere.
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Appendix

A NLO expressions for polarized parton
distributions in the virtual photon

We give the explicit expressions of ∆qγS , ∆Gγ , and ∆qγNS
up to NLO. They are written in terms of one- (two-)
loop anomalous dimensions ∆γ0,nij (∆γ

(1),n
ij ) (i, j = ψ,G),

∆γ0,nNS (γ(1),nNS ), ∆K0,n
l (∆K

(1),n
l ) (l = ψ,G,NS), and the

one-loop photon matrix elements of the hadronic opera-
tors, ∆Anl . The expressions of one-loop and MS scheme
two-loop anomalous dimensions are found, for example,
in the appendix of [23].

A.1 Singlet quark distribution

∆qγS(n,Q
2, P 2)/

α

8πβ0

=
4π

αs(Q2)
L̂+nS

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0+1

}

+
4π

αs(Q2)
L̂−n
S

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0+1

}

+Â+nS

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0

}

+Â−n
S

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0

}

+B̂+nS

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0+1

}

+B̂−n
S

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0+1

}
+ĈnS , (A.1)
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where

L̂+nS = ∆K0,n
ψ · ∆γ0,nψψ − λn−

λn+ − λn−
· 1
1 + λn+/2β0

, (A.2)

L̂−n
S = ∆K0,n

ψ · ∆γ0,nψψ − λn+

λn− − λn+
· 1
1 + λn−/2β0

, (A.3)

with

λn± =
1
2
{∆γ0,nψψ +∆γ0,nGG ± [(∆γ0,nψψ − ∆γ0,nGG)2

+ 4∆γ0,nψG∆γ0,nGψ ]
1/2}, (A.4)

β0 = 11 − 2Nf/3, β1 = 102 − 38Nf/3, (A.5)

and

Â+nS =
1

λn+(λn+ − λn−)(2β0 + λn− − λn+)

×
[
∆K0,n

ψ

{
(∆γ0,nψψ − 2β0 − λn−)∆γ

(1),n
ψψ

+ ∆γ0,nGψ∆γ
(1),n
ψG

}
(∆γ0,nψψ − λn−)

+ ∆K0,n
ψ

{
(∆γ0,nψψ − 2β0 − λn−)∆γ

(1),n
Gψ

+ ∆γ0,nGψ∆γ
(1),n
GG

}
∆γ0,nψG

+ 2β0(2β0 + λn− − λn+)

×
{
∆K

(1),n
ψ (∆γ0,nψψ − λn−) +∆K

(1),n
G ∆γ0,nψG

}
− 2β0(2β0 + λn− − λn+)λn+∆Anψ(∆γ0,nψψ − λn−)

− β1
β0

∆K0,n
ψ (2β0 + λn− − λn+)(2β0 − λn+)

× (∆γ0,nψψ − λn−)
]
, (A.6)

Â−n
S =

1
λn−(λn− − λn+)(2β0 + λn+ − λn−)

×
[
∆K0,n

ψ

{
(∆γ0,nψψ − 2β0 − λn+)∆γ

(1),n
ψψ

+ ∆γ0,nGψ∆γ
(1),n
ψG

}
(∆γ0,nψψ − λn+)

+ ∆K0,n
ψ

{
(∆γ0,nψψ − 2β0 − λn+)∆γ

(1),n
Gψ

+ ∆γ0,nGψ∆γ
(1),n
GG

}
∆γ0,nψG

+ 2β0(2β0 + λn+ − λn−)

×
{
∆K

(1),n
ψ (∆γ0,nψψ − λn+) +∆K

(1),n
G ∆γ0,nψG

}
− 2β0(2β0 + λn+ − λn−)λn−∆Anψ(∆γ0,nψψ − λn+)

− β1
β0

∆K0,n
ψ (2β0 + λn+ − λn−)(2β0 − λn−)

× (∆γ0,nψψ − λn+)
]
, (A.7)

B̂+nS = ∆K0,n
ψ · 1

(2β0 + λn+)(λn+ − λn−)(2β0 + λn+ − λn−)

×
[{

(∆γ0,nψψ − λn−)∆γ
(1),n
ψψ +∆γ0,nGψ∆γ

(1),n
ψG

}
× (2β0 +∆γ0,nψψ − λn−)

+
{
(∆γ0,nψψ − λn−)∆γ

(1),n
Gψ +∆γ0,nGψ∆γ

(1),n
GG

}
∆γ0,nψG

− β1
β0

(2β0 + λn+ − λn−)λn+(∆γ0,nψψ − λn−)
]
, (A.8)

B̂−n
S = ∆K0,n

ψ · 1
(2β0 + λn−)(λn− − λn+)(2β0 + λn− − λn+)

×
[{

(∆γ0,nψψ − λn+)∆γ
(1),n
ψψ +∆γ0,nGψ∆γ

(1),n
ψG

}
× (2β0 +∆γ0,nψψ − λn+)

+
{
(∆γ0,nψψ − λn+)∆γ

(1),n
Gψ +∆γ0,nGψ∆γ

(1),n
GG

}
∆γ0,nψG

− β1
β0

(2β0 + λn− − λn+)λn−(∆γ0,nψψ − λn+)
]
,

ĈnS = 2β0∆Anψ. (A.9)

A.2 Gluon distribution

∆Gγ(n,Q2, P 2)/
α

8πβ0

=
4π

αs(Q2)
L̂+nG

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0+1

}

+
4π

αs(Q2)
L̂−n
G

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0+1

}

+Â+nG

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0

}

+Â−n
G

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0

}

+B̂+nG

{
1 −

[
αs(Q2)
αs(P 2)

]λn
+/2β0+1

}

+B̂−n
G

{
1 −

[
αs(Q2)
αs(P 2)

]λn
−/2β0+1

}
, (A.10)

where

L̂+nG =
∆K0,n

ψ ∆γ0,nGψ
λn+ − λn−

· 1
1 + λn+/2β0

, (A.11)

L̂−n
G =

∆K0,n
ψ ∆γ0,nGψ

λn− − λn+
· 1
1 + λn−/2β0

, (A.12)

and

Â+nG =
1

λn+(λn+ − λn−)(2β0 + λn− − λn+)

×
[
∆K0,n

ψ

{
(∆γ0,nψψ − 2β0 − λn−)∆γ

(1),n
ψψ
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+ ∆γ0,nGψ∆γ
(1),n
ψG

}
∆γ0,nGψ

+ ∆K0,n
ψ

{
(∆γ0,nψψ − 2β0 − λn−)∆γ

(1),n
Gψ

+ ∆γ0,nGψ∆γ
(1),n
GG

}
(∆γ0,nGG − λn−)

+ 2β0(2β0 + λn− − λn+)

×
{
∆K

(1),n
ψ ∆γ0,nGψ +∆K

(1),n
G (∆γ0,nGG − λn−)

}
− 2β0(2β0 + λn− − λn+)λn+∆Anψ∆γ0,nGψ (A.13)

− β1
β0

∆K0,n
ψ (2β0 + λn− − λn+)(2β0 − λn+)∆γ0,nGψ

]
,

Â−n
G =

1
λn−(λn− − λn+)(2β0 + λn+ − λn−)

×
[
∆K0,n

ψ

{
(∆γ0,nψψ − 2β0 − λn+)∆γ

(1),n
ψψ

+ ∆γ0,nGψ∆γ
(1),n
ψG

}
∆γ0,nGψ

+ ∆K0,n
ψ

{
(∆γ0,nψψ − 2β0 − λn+)∆γ

(1),n
Gψ

+ ∆γ0,nGψ∆γ
(1),n
GG

}
(∆γ0,nGG − λn+)

+ 2β0(2β0 + λn+ − λn−)

×
{
∆K

(1),n
ψ ∆γ0,nGψ +∆K

(1),n
G (∆γ0,nGG − λn+)

}
− 2β0(2β0 + λn+ − λn−)λn−∆Anψ∆γ0,nGψ (A.14)

− β1
β0

∆K0,n
ψ (2β0 + λn+ − λn−)(2β0 − λn−)∆γ0,nGψ

]
,

B̂+nG = ∆K0,n
ψ · 1

(2β0 + λn+)(λn+ − λn−)(2β0 + λn+ − λn−)

×
[{

(∆γ0,nψψ − λn−)∆γ
(1),n
Gψ +∆γ0,nGψ∆γ

(1),n
GG

}
× (2β0 +∆γ0,nGG − λn−)

+
{
(∆γ0,nψψ − λn−)∆γ

(1),n
ψψ +∆γ0,nGψ∆γ

(1),n
ψG

}
∆γ0,nGψ

− β1
β0

(2β0 + λn+ − λn−)λn+∆γ0,nGψ

]
, (A.15)

B̂−n
G = ∆K0,n

ψ · 1
(2β0 + λn−)(λn− − λn+)(2β0 + λn− − λn+)

×
[{

(∆γ0,nψψ − λn+)∆γ
(1),n
Gψ +∆γ0,nGψ∆γ

(1),n
GG

}
× (2β0 +∆γ0,nGG − λn+)

+
{
(∆γ0,nψψ − λn+)∆γ

(1),n
ψψ +∆γ0,nGψ∆γ

(1),n
ψG

}
∆γ0,nGψ

− β1
β0

(2β0 + λn− − λn+)λn−∆γ0,nGψ

]
. (A.16)

A.3 Non-singlet quark

∆qγNS(n,Q
2, P 2)/

α

8πβ0

=
4π

αs(Q2)
L̂nNS

{
1 −

[
αs(Q2)
αs(P 2)

]λn
NS/2β0+1

}

+ÂnNS

{
1 −

[
αs(Q2)
αs(P 2)

]λn
NS/2β0

}

+B̂n
NS

{
1 −

[
αs(Q2)
αs(P 2)

]λn
NS/2β0+1

}
+ĈnNS, (A.17)

where

L̂nNS = ∆K0,n
NS · 1

1 + λnNS/2β0
, (A.18)

ÂnNS =
1

λnNS

{
−∆K0,n

NS∆γ
(1),n
NS + 2β0∆K

(1),n
NS

− 2β0λnNS∆AnNS − β1
β0

∆K0,n
NS (2β0 − λnNS)

}
, (A.19)

B̂n
NS = ∆K0,n

NS
1

2β0 + λnNS

(
∆γ

(1),n
NS − β1

β0
λnNS

)
, (A.20)

ĈnNS = 2β0∆AnNS, (A.21)

with

λnNS = ∆γ0,nNS . (A.22)

B The first moments

B.1 One-loop order

∆γ0,n=1NS = ∆γ0,n=1ψψ = 0, (B.1)

∆γ0,n=1ψG = 0, ∆γ0,n=1Gψ = −6CF , (B.2)

∆γ0,n=1GG = −22
3
CA +

8
3
Tf = −2β0, (B.3)

λn=1+ = 0, λn=1− = −2β0, (B.4)

∆K0,n=1
NS = ∆K0,n=1

ψ = 0, (B.5)

where
CA = 3, CF =

4
3
, Tf =

Nf

2
, (B.6)

with Nf being the number of flavors.

B.2 MS scheme

∆γ
(1),n=1
NS,MS

= 0, (B.7)

∆γ
(1),n=1
ψψ,MS

= 24CFTf , (B.8)

∆γ
(1),n=1
ψG,MS

= 0, (B.9)

∆γ
(1),n=1
Gψ,MS

= 18C2F − 142
3

CACF +
8
3
CFTf , (B.10)
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∆γ
(1),n=1
GG,MS

= 8CFTf +
40
3
CATf − 68

3
C2A = −2β1,

(B.11)

∆K
(1),n=1
ψ,MS

= ∆K
(1),n=1
G,MS

= ∆K
(1),n=1
NS,MS

= 0, (B.12)

∆An=1
ψ,MS = −12〈e2〉Nf , (B.13)

∆An=1
G,MS = 0, (B.14)

∆An=1NS,MS = −12(〈e4〉 − 〈e2〉2)Nf , (B.15)

∆Bn=1
ψ,MS = ∆Bn=1

NS,MS = −3CF , (B.16)

∆Bn=1
G,MS =

Nf

2
∆Bn=1

γ,MS = 0. (B.17)

B.3 CI-like schemes (CI, AB, OS, AR)

∆γ
(1),n=1
NS,a = 0, (B.18)

∆γ
(1),n=1
ψψ,a = 0, (B.19)

∆γ
(1),n=1
ψG,a = ∆γ

(1),n=1
ψG,MS

= 0, (B.20)

∆γ
(1),n=1
Gψ,a = ∆γ

(1),n=1
Gψ,MS

= 18C2F − 142
3

CACF +
8
3
CFTf , (B.21)

∆γ
(1),n=1
GG,a = 32CFTf +

40
3
CATf − 68

3
C2A

= −2β1 + 12NfCF , (B.22)

∆K
(1),n=1
ψ,a = ∆K

(1),n=1
NS,a = 0, (B.23)

∆K
(1),n=1
G,a = −72〈e2〉NfCF , (B.24)

∆An=1ψ,a = ∆An=1G,a = ∆An=1NS,a = 0, (B.25)

∆Bn=1
ψ,a = ∆Bn=1

NS,a = −3CF , (B.26)

∆Bn=1
G,a =

Nf

2
∆Bn=1

γ,a = −2Nf . (B.27)

C Derivation of (4.20) and (4.21)

We observe that, in the MS scheme, we have ∆K0,n=1 =
∆K(1),n=1 = 0, where ∆Kn = (∆Kn

ψ , ∆Kn
G, ∆Kn

NS).

(Note that ∆K
(1),n=1
G,CI−like �= 0; see (B.24).) Then, up to

NLO, the parton distributions ∆qγ(n = 1)|MS = (∆qγS ,
∆Gγ , ∆qγNS)|MS satisfy a homogeneous differential equa-
tion instead of an inhomogeneous one:

d∆qγ(n = 1, Q2, P 2)|MS
d lnQ2

(C.1)

= ∆qγ(n = 1, Q2, P 2)|MS∆P (n = 1, Q2)|MS,
where the 3 × 3 splitting function matrix ∆P is the
hadronic part of ∆P̃ given in (3.1). Expanding ∆P (n =
1, Q2)|MS as

∆P (n = 1, Q2)|MS =
αs(Q2)

2π
∆P

(0)
n=1

+
[
αs(Q2)

2π

]2
∆P

(1)
n=1|MS + · · · , (C.2)

and introducing t instead of Q2 as the evolution variable,

t ≡ 2
β0

ln
αs(P 2)
αs(Q2)

, (C.3)

we find that (C.1) is rewritten as

d∆qγn=1(t)|MS
dt

= ∆qγn=1(t)|MS
{
∆P

(0)
n=1 (C.4)

+
αs(t)
2π

[
∆P

(1)
n=1|MS − β1

2β0
∆P

(0)
n=1

]
+ O(α2s )

}
.

We look for a solution in the following form:

∆qγn=1(t)|MS = ∆q
γ(0)
n=1(t) +∆q

γ(1)
n=1(t)|MS, (C.5)

with the initial condition (see (2.5)),

∆q
γ(0)
n=1(0) = 0, (C.6)

∆q
γ(1)
n=1(0)|MS =

α

4π
∆An=1|MS

= −3α
π
Nf (〈e2〉, 0, 〈e4〉 − 〈e2〉2). (C.7)

In the LO, we easily find that ∆q
γ(0)
n=1(t) = 0 due to the

initial condition (C.6).
The evolution equation in the NLO is written as

d∆q
γ(1)
n=1(t)|MS
dt

= ∆q
γ(1)
n=1(t)|MS

{
∆P

(0)
n=1

+
αs(t)
2π

[
∆P

(1)
n=1|MS − β1

2β0
∆P

(0)
n=1

]}
, (C.8)

and we obtain for the solution

∆q
γ(1)
n=1(t)|MS = ∆q

γ(1)
n=1(0)|MSexp(M), (C.9)

where

M = ∆P
(0)
n=1t+

1
β0

[
αs(0)
π

− αs(t)
π

]
×
[
∆P

(1)
n=1|MS − β1

2β0
∆P

(0)
n=1

]
. (C.10)

Since

∆P
(0)
n=1 = −1

4
∆γ̂0n=1, ∆P

(1)
n=1|MS = −1

8
∆γ̂

(1)
n=1|MS,

(C.11)
and using the information on the first moments of the
anomalous dimensions which are listed in Appendices B.1
and B.2, we find that M turns out to be a triangular
matrix in the following form:

M =

(
a b 0
0 c 0
0 0 d

)
, (C.12)
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with

a =
1
β0

[
αs(0)
π

− αs(t)
π

](
−1

8
γ
(1),n=1
ψψ,MS

)
, (C.13)

b =
3
2
CF t+

1
β0

[
αs(0)
π

− αs(t)
π

]
×
(

−1
8
γ
(1),n=1
Gψ,MS

− 3β1
4β0

CF

)
, (C.14)

c =
1
2
β0t, (C.15)

d =
1
β0

[
αs(0)
π

− αs(t)
π

](
−1

8
γ
(1),n=1
NS,MS

)
. (C.16)

The matrix exp(M) is, therefore, written in the form

exp(M) =

( ea B 0
0 ec 0
0 0 ed

)
, (C.17)

and thus we obtain from (C.7) and (C.9),

∆qγS(n = 1, Q2, P 2)|MS = −3α
π
Nf 〈e2〉

×exp
{

− 1
8β0

[
αs(0)
π

− αs(t)
π

]
∆γ

(1),n=1
ψψ,MS

}
(C.18)

≈ −3α
π
Nf 〈e2〉

{
1 − 2

β0

[
αs(P 2)

π
− αs(Q2)

π

]
Nf

}
,

∆qγNS(n = 1, Q2, P 2)|MS = −3α
π
Nf (〈e4〉 − 〈e〉2)

×exp
{

− 1
8β0

[
αs(0)
π

− αs(t)
π

]
∆γ

(1),n=1
NS,MS

}
= −3α

π
Nf (〈e4〉 − 〈e〉2), (C.19)

where in the last line we use the fact ∆γ
(1),n=1
NS,MS

= 0.
Incidentally, under the following approximation:

b ≈ 3
2
CF t, a+ c ≈ c, (C.20)

B is evaluated as

B ≈ b

{
1 +

1
2
c+

1
3!
c2 +

1
4!
c3 + · · ·

}
=

b

c
[ec − 1]

≈ 3CF
β0

[
αs(P 2)
αs(Q2)

− 1
]
. (C.21)

This leads to the expression for the first moment of gluon
distribution ∆Gγ(n = 1, Q2, P 2)|MS given in (4.6).
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